Quantum Communication Components

Introduction

Quantum communication can overcome the intrinsic security drawbacks of classical encryption technology, as the unique approach that is theoretically proven to be unconditionally secure so far. The most important components in quantum communication system include single-photon detector, quantum random number generator, and single-photon frequency conversion, whose parameters directly limit the performance of quantum communication system.

1. Single-photon detectors
Single-photon avalanche diodes (SPAD) operating in Geiger mode have distinct advantages such as low-cost, small-size and without requiring ultralow temperature cooling. Therefore, using such devices is the primary approach for applications requiring single-photon detection in practice. We will carry out the following researches in this direction:
(1) Design and fabrication of high-efficiency and low-noise InGaAs/InP SPADs.
(2) Design of high-performance quenching electronics and monolithically integrated circuits.
(3) Applications of SPADs in quantum communication and Lidar.
(4) High-efficiency Silicon SPADs.

2. Quantum random number generator
Quantum random number generator (QRNG) can produce random numbers that are unpredictable, irreproducible and unbiased, based on the fundamental principles of quantum physics. QRNG is another core component in quantum communication system. We will carry out the following researches in this direction:
(1) Ultrafast generation of quantum random numbers.
(2) Miniaturized real-time QRNG.
(3) Device-independent QRNG that is to generate genuine quantum randomness and to resolve the problems of entropy estimation errors and the corresponding bias due to the imperfections of realistic devices.

3. Frequency conversion in single photon level
We focus on the newly up-conversion single photon detector based on the periodically poled lithium niobate(PPLN) waveguide and its application on the Quantum Key Distribution、Optical Time Domain Reflectometer and Wind Doppler Lidar.

Related Publications

  • Zhang, X. -G., Nie, Y. -Q., Zhou, H., Liang, H., Ma, X., Zhang, J. & Pan, J. -W. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction. Review of Scientific Instruments 87, 076102 (2016).
  • Zhang, J., Itzler, M., Zbinden, H. & Pan, J. -W. Advances in InGaAs/InP single-photon detector systems for quantum communication. Light: Science \& Applications 4, e286 (2015).
  • Xia, H., Shentu, G., Shangguan, M., Xia, X., Jia, X., Wang, C., Zhang, J., Pelc, J., Fejer, M., Zhang, Q., Dou, X. & Pan, J. -W. Long-range micro-pulse aerosol lidar at 1.5 mu m with an upconversion single-photon detector. Optics Letters 40, 1579-1582 (2015).
  • Ma, J., Zhou, M., Yu, Z., Jiang, X., Huo, Y., Zang, K., Zhang, J., Harris, J., Jin, G., Zhang, Q. & Pan, J. -W. Simulation of a high-efficiency and low-jitter nanostructured silicon single-photon avalanche diode. Optica 2, 974-979 (2015).
  • Nie, Y. -Q., Huang, L., Liu, Y., Payne, F., Zhang, J. & Pan, J. -W. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Review of Scientific Instruments 86, 063105 (2015).
  • Nie, Y. -Q., Zhang, H. -F., Zhang, Z., Wang, J., Ma, X., Zhang, J. & Pan, J. -W. Practical and fast quantum random number generation based on photon arrival time relative to external reference. Applied Physics Letters 104, 051110 (2014).
  • Shentu, G. -L., Sun, Q. -C., Jiang, X., Wang, X. -D., Pelc, J., Fejer, M., Zhang, Q. & Pan, J. -W. 217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector. Optics Express 21, 24674-24679 (2013).
  • Liang, F. -T., Datao, G., Suen, H., Chonghan, L., Tiankuan, L., Da-Shung, S., Ping-Kun, T., Annie, X., Jingbo, Y. & Jin, G. Active inductor shunt peaking in high-speed VCSEL driver design. Chinese Physics C 37, 116101 (2013).
  • Shentu, G. -L., Pelc, J., Wang, X. -D., Sun, Q. -C., Zheng, M. -Y., Fejer, M., Zhang, Q. & Pan, J. -W. Ultralow noise up-conversion detector and spectrometer for the telecom band. Optics Express 21, 13986-13991 (2013).
  • Shentu, G. -L., Xia, X. -X., Sun, Q. -C., Pelc, J., Fejer, M., Zhang, Q. & Pan, J. -W. Upconversion detection near 2 mu m at the single photon level. Optics Letters 38, 4985-4987 (2013).