研究方向
超冷原子具有极高的可操控性,这使得人们可以用其搭建非常重要的模拟平台,用来处理凝聚态系统中遇到的问题。我们使用一系列原子冷却技术将铷87原子冷却到玻色爱因斯坦凝聚态,之后再使用例如拉曼耦合,光晶格等技术将该系统变换到所需要的状态,获得对应的哈密顿量。我们主要使用该模拟平台来研究规范场和自旋轨道耦合问题。
我们目前的研究兴趣主要集中在拓扑相变和奇异拓扑量子态上。近年来,凝聚态系统中观测到许多有趣的拓扑现象。 在理解拓扑量子态和一类新的拓扑物质等方面,自旋轨道耦合被认为扮演了重要的角色。 这使得超冷原子自旋轨道耦合系统在研究奇异量子态方面具有非常巨大的潜能,将可能为我们揭示许多超越传统凝聚态系统的物理现象。
相关论文
- Highly Controllable and Robust 2D Spin-Orbit Coupling for Quantum Gases. Physical Review Letters 121, 150401 (2018).
- Magnetic-enhanced modulation transfer spectroscopy and laser locking for 87 Rb repump transition. Optics Express 26, 27773 (2018).
- Precision mapping the topological bands of 2D spin-orbit coupling with microwave spin-injection spectroscopy. Science Bulletin 63, 1464-1469 (2018).
- Uncover Topology by Quantum Quench Dynamics. Physical Review Letters 121, 250403 (2018).
- Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates. Science 354, 83-88 (2016).
- Softening of Roton and Phonon Modes in a Bose-Einstein Condensate with Spin-Orbit Coupling. Physical Review Letters 114, 105301 (2015).
- Experimental determination of the finite-temperature phase diagram of a spin-orbit coupled Bose gas. Nature Physics 10, 314-320 (2014).
- Stability of excited dressed states with spin-orbit coupling. Physical Review A 87, 011601 (2013).
- Collective Dipole Oscillations of a Spin-Orbit Coupled Bose-Einstein Condensate. Physical Review Letters 109, 115301 (2012).