研究方向
我们致力于发展和应用高效数值方法和超冷原子量子模拟,探索多体系统的呈现宏观性质,特别是相变和临界现象。研究内容主要包括:
- 蒙特卡洛方法
- 相变和临界现象
- 量子模拟理论
相关论文
- Modified Bethe-Peierls boundary condition for ultracold atoms with spin-orbit coupling. Physical Review A 86, 053608 (2012).
- Monte Carlo study of the universal area distribution of clusters in the honeycomb O( n ) loop model. Chinese Physics B 21, 070211 (2012).
- Percolation in the canonical ensemble. Journal of Physics A: Mathematical and Theoretical 45, 494006 (2012).
- Phase diagram of the toric code model in a parallel magnetic field. Physical Review B 85, 195104 (2012).
- Scaling of cluster heterogeneity in the two-dimensional Potts model. Physical Review E 86, 022105 (2012).
- Shortest-path fractal dimension for percolation in two and three dimensions. Physical Review E 86, 061101 (2012).
- The O(n) loop model on a three-dimensional lattice. Nuclear Physics B 859, 107-128 (2012).