研究方向
我们致力于发展和应用高效数值方法和超冷原子量子模拟,探索多体系统的呈现宏观性质,特别是相变和临界现象。研究内容主要包括:
- 蒙特卡洛方法
- 相变和临界现象
- 量子模拟理论
相关论文
- Geometric structure of percolation clusters. Physical Review E 89, 012120 (2014).
- Reentrance of Berezinskii-Kosterlitz-Thouless-like transitions in a three-state Potts antiferromagnetic thin film. Physical Review B 90, 134420 (2014).
- Short-range correlations in percolation at criticality. Physical Review E 90, 042106 (2014).
- Simultaneous analysis of three-dimensional percolation models. Frontiers of Physics 9, 113-119 (2014).
- Two-species hard-core bosons on the triangular lattice: A quantum Monte Carlo study. Physical Review A 89, 013628 (2014).
- Universal Conductivity in a Two-Dimensional Superfluid-to-Insulator Quantum Critical System. Physical Review Letters 112, 030402 (2014).
- Bond and site percolation in three dimensions. Physical Review E 87, 052107 (2013).
- Deconfined Criticality Flow in the Heisenberg Model with Ring-Exchange Interactions. Physical Review Letters 110, 185701 (2013).
- High-precision Monte Carlo study of directed percolation in (d+1) dimensions. Physical Review E 88, 042102 (2013).
- Ising-like phase transition of an \textlessmath display. Physical Review E 88, 052125 (2013).